拓扑学Topology是几何学的一个分支,研究图形和一般数学对象的属性,这些属性在变形时不会发生变化,不会 “撕裂”、”重叠 “或 “粘连”。

澳洲论文代写AAEXAM会为你提供专业的代写服务:安全靠谱的数学网课代写服务可以为留学生们提供高质量、高效率的代修帮助,让留学生有更多时间适应科目学习

澳洲论文代写AAEXAM我们团队有着丰富的代写代修经验,来自各院校的硕博导师可以为你提供专业的辅导服务,我们也能第一时间与你沟通,收集意见并进行令你满意的修改。如有意向请联系我们vx,我们会为你提供专业的代写服务。

拓扑学 Topology essay代写

拓扑学这个术语也表示定义拓扑空间的开口集合。例如,一个立方体和一个球体在拓扑上是等价的物体(即同构),因为它们可以相互变形而没有任何粘连、撕裂或重叠;另一方面,一个球体和一个环形体则不是,因为环形体包含一个不能通过变形而消除的 “洞”。

拓扑空间Topological space

在数学上,拓扑空间是拓扑学的基本对象。这是一个非常普遍的空间概念,伴随着一个以最弱方式定义的 “接近 “概念。这样一来,数学中常用的许多空间(如欧几里得空间或公制空间)都是拓扑空间。直观地说,拓扑空间的特征是它的形状,而不是它的点之间的距离,后者可能没有被定义。

连续函数Complex number functions

连续性有多种定义,与使用的数学背景相对应:函数的连续性是拓扑学和数学分析的基本概念之一。一个函数的连续性也可以被局部定义:在这种情况下,我们说的是域中某一点的连续性。根据定义,一个连续函数在其域中的每一点都是连续的。一个不连续的函数被称为不连续,域中不连续的点被称为不连续点。

流形Manifold

在几何学中,一个品种是一个拓扑空间,其局部与一个著名的拓扑空间(如欧几里得n}n维空间)相似,但其整体可能具有不同的几何属性(如它可能与欧几里得空间相反是 “弯曲的”)。

其他相关科目课程代写:

  • 点集拓扑学 General topology
  • 代数拓扑 Algebraic topology
  • 差别化的拓扑结构 Differential topology
  • 几何拓扑学 Geometric topology
  • 无点拓扑 Pointless topology

拓扑学 Topology 的历史

拓扑学作为一门定义明确的数学学科,起源于二十世纪初,但一些孤立的结果可以追溯到几个世纪前。其中包括研究几何学的某些问题的Leonhard Euler。他在1736年发表的关于柯尼斯堡七桥的论文被认为是拓扑学的最早的实际应用之一。 1750年11月14日,欧拉写信给一个朋友,说他已经意识到多面体的边的重要性。这导致了他的多面体公式:V-E+F=2,一些权威人士认为这一分析是第一个定理,标志着拓扑学的诞生。

AAexam复分析 Complex analysis代写

Topology, as a well-defined mathematical discipline, originates in the early part of the twentieth century, but some isolated results can be traced back several centuries. Among these are certain questions in geometry investigated Leonhard Euler. His 1736 paper on the Seven Bridges of Königsberg is regarded as one of the first practical applicatio of topology. On 14 November 1750 , Euler wrote to a friend that he had realized the importance of the edges of a polyhedron. This led to his polyhedron formula, V-E+F=2Some authorities regard this analysis as the first theorem, signaling the birth of topology.

拓扑学 Topology 课后作业代写

问题 1.

Let $X$ and $Y$ be topological spaces.
a. Let $\mathcal{B}{\Pi}$ be the collection of subsets of $X \times Y$ of the form $U \times V$, where $U$ is open in $X$ and $V$ is open in $Y$. Show that $\mathcal{B}{\Pi}$ is a basis for a topology on $X \times Y$. This topology is called the product topology.
b. Let $\mathcal{B}{\mathrm{U}}$ be the collection of subsets of $X \coprod Y$ of the form $U \times{0}$ or $V \times{1}$, where $U$ is open in $X$ and $V$ is open in $Y$. Show that $\mathcal{B}{\mathrm{II}}$ is a basis for a topology on $X$ IY. This topology is called the sum topology.
c. Consider $\mathbb{R}$ equipped with its standard metric topology. Show that the product topology on $\mathbb{R} \times \mathbb{R}$ is the same as the standard metric topology on $\mathbb{R}^{2}$.

证明 .

If we have two elements $U \times V$ and $U^{\prime} \times V^{\prime}$ of $\mathcal{B} \Pi$, where $U$ and $U^{\prime}$ are open in $X$ and $V$ and $V^{\prime}$ are open in $Y$, then their intersection is $\left(U \cap U^{\prime}\right) \times\left(V \cap V^{\prime}\right)$, which is in $\mathcal{B}{\Pi}$ as well. Hence, for any two elements of $\mathcal{B} \Pi$ and any $a \in X \times Y$ in their intersection, there exist an element of $\mathcal{B}{\Pi}$ that contains $a$ and that is in the intersection, namely take the intersection itself. Hence, $\mathcal{B}{\Pi}$ is a basis. b. Again, to check this, checking that $\mathcal{B}{\mathrm{II}}$ is closed under finite non-empty intersections is enough. Intersections of two sets, $U \times{0}$ and $U^{\prime} \times{0}$, where $U$ and $U^{\prime}$ are open in $X$, is equal to $U \cap U^{\prime} \times{0}$, which is again in $\mathcal{B}{\mathrm{I}}$. It is similar for two sets of the type $V \times{1}$ in $\mathcal{B}{\mathrm{I}}$. On the other hand, $U \times{0} \cap V \times{1}=\emptyset, \mathcal{B}{\coprod}$ satisfies the desired property; hence, it is a basis. c. The elements of $\mathcal{B}{\Pi}$ are open in the metric topology: If $(x, y) \in U \times V$, where $U$ and $V$ are open, then there exist $\epsilon, \epsilon^{\prime}>0$ such that $B(x, \epsilon) \subset U$ and $B\left(y, \epsilon^{\prime}\right) \subset V$. Then it is easy to show that $B\left((x, y), \min \left{\epsilon, \epsilon^{\prime}\right}\right) \subset$ $U \times V$. As $(x, y) \in U \times V$ was arbitrary, this shows that the sets $U \times V$ are metric open. Thus, all the basis elements are metric open and the topology they generate is contained in $\tau_{d}$, the metric topology. On the other hand, as open subsets in metric topology are unions of ball, it is enough to show that the balls are open in the product topology. Given $(x, y)=b \in B\left(a, \epsilon^{\prime}\right) \subset \mathbb{R}^{2}$, we can find $\epsilon>0$ such that $B(b, \epsilon) \subset B\left(a, \epsilon^{\prime}\right)$. Then, clearly $(x-\epsilon / 2, x+\epsilon / 2) \times(y-\epsilon / 2, y+\epsilon / 2) \subset B((x, y), \epsilon)=B(b, \epsilon)$. As $b, a, \epsilon^{\prime}$ was arbitrary, this shows the open balls are product open, hence metric open subsets are open in the product topology. Thus, they are the same.

澳洲论文代写aaexam服务流程:

1.添加我们主页的vx或其他联系方式

2.提交订单并提出您的服务需求,可以支付50%定金

3.完成订单后我们会再次通知您,您收到作品后您仍提出修改要求,我们将免费给你您进行修改。确认无误后再支持剩余的尾款即可。